“제로존은 세계를 우아하게 설명하는 이론”
제로존 2탄! - 키예프 CODATA 국제학술대회 참관기
우크라이나 키예프=박성원 전 신동아 기자 parkers49@hanmail.net
미국의 조그마한 섬 하와이에서 동유럽의 우크라이나까지 가는 여정은 멀고도 멀었다. 워싱턴 주(州)의 시애틀 공항에 내려 네덜란드의 암스테르담으로 가는 비행기를 기다리느라 6시간을 보냈고, 11시간을 날아가 암스테르담에 도착했다. 오랜만에 암스테르담을 다시 찾아 잠깐 추억에 젖었으나 다시 우크라이나 키예프로 향했다. 유럽에서도 크고 오래된 도시로 손꼽히는 키예프에 도착한 것은 10월6일 오후 5시. 36시간 넘게 공항에서, 비행기 내에서 보낸 셈이었다. 피곤했다. 그러나 유려한 도시를 한가로이 가로지르는 드네프로(Dnipro) 강이 마치 서울의 한강처럼 따뜻하게 맞아주었다.
신동아 기자 시절, 마지막으로 쓴 기사가 제로존 이론을 소개한 글이었다. 그때만 해도 제로존 이론이 우크라이나 키예프에서 소개될 줄은 상상조차 못했다. 한국물리학회가 제로존 이론을 두고 ‘엉터리’라고 평가했고, 이들의 의견을 그대로 반영한 언론이 대부분이었던 점을 기억한다면 제로존 이론은 벌써 자취를 감췄어야 했다.
그러나 제로존 이론을 주창한 양동봉 표준반양자물리연구원 원장은 자신의 이론을 지지하는 과학자들을 모았고, 신동아 기사를 읽은 수많은 독자를 인터넷에서 만나 이들과 논쟁하면서 꾸준히 자신의 이론을 설명했다. 그 결과 양 원장은 자신의 블로그를 통해 폭넓은 지지층을 확보했고, 과학기술데이터위원회(CODATA)의 국제학술회의에서 그의 이론을 소개하기에 이르렀다.
파리에 본부를 둔 과학기술데이터위원회는 2년마다 국제학술회의를 개최하는데, 직접 가서 보니 규모가 생각보다 컸다. 지난 10월5일부터 8일까지 개최된 학술회의에는 요약본 심사를 통과한 논문 500여 편이 세계 각지에서 제출됐고, 학술회의 참석자들은 아침 8시30분부터 저녁 6시까지 키예프공과대학 예술대학 캠퍼스에서 나뉘어 토론했다. 올해 국제학술회의 전체 주제는 ‘미래 사회를 위한 과학기술정보’. 이는 다시 10개의 소주제로 나뉘는데, 지속가능한 발전을 위한 과학 데이터, e-사이언스 네크워크, 새로운 데이터 발굴과 지식 경영, 친환경 데이터, 정보사회를 위한 과학 데이터 등 주제가 다양했고, 내용도 흥미로웠다.
500여 편의 논문 중 주요 회의(Key Session)의 의제로 채택된 논문은 60여 편, 이 중 제로존 이론은 셋째 날 토론 주제로 선정됐다. 주요 회의에선 토론을 이끄는 의장이 두 명씩 있으며, 세계 각지에서 온 과학자들이 한 주제를 놓고 중점적으로 논의한다. 나머지 논문들이 제출 자체에 의미를 두었거나 분과회의(Parallel)를 통해 소규모 인원이 토론하는 것과 비교하면 주요 의제의 토론 과제로 제로존 이론이 선택됐다는 것은 학술회의 주최 측에서 제로존 이론을 비중 있게 다뤘다는 점을 암시한다.
셋째 날 주요 회의석상에서는 제로존 이론 등 총 6편의 논문이 토의과제로 선정됐다. 제로존 논문의 교신저자인 이상지 박사(GG21 기술총괄이사)는 이론의 핵심인 5가지 가정을 설정한 배경과 SI(국제단위계) 기본단위의 무차원수 유도과정, 그리고 과학기술데이터위원회의 자료를 이용해 제로존 이론을 검증하는 내용을 발표했다. 이 박사는 “제로존 이론은 자연이 하나의 기본 요소로 이루어져 있고, 그것을 숫자 ‘1’로 해석하고 있다”며 “7개의 SI 기본단위를 포함한 모든 물리량을 무차원수로 변환했고, 이를 큐닛(Qunit)으로 이름 지었다”고 말했다. 큐닛은 단위(unit)를 포함하는 물리량(quantity)을 의미하는데, 양 원장의 표현에 따르면 “시간과 공간의 기본 크기를 숫자에 이미 반영한” 것이다. 가령 숫자 ‘1’은 진동수 1Hz이며 시공간의 크기 ‘1’이 된다. ‘신동아’ 2007년 8월호에선 숫자 ‘1’을 ‘빛 알갱이’ 하나로 묘사했다. 이 세상은 모두 ‘빛’이며 모든 물질은 고유한 진동수와 함께 고유한 시공간의 크기를 가진다는 것이 양 원장의 주장이다.
“모든 것은 하나”
제로존 이론은 참석한 과학자들의 눈길을 끌었는데, 한 과학자는 턱을 괸 채 진지하게 들었고, 또 다른 과학자는 제로존 이론의 주요 수식을 메모했다. 발표가 끝난 뒤에도 흥미를 보인 러시아 고에너지물리학연구소의 에젤라(Ezhela V.V.·입자물리학 전공)씨는 제로존 이론을 발표한 이상지 박사와 양동봉 원장에게 다가가 추가 설명을 요청하기도 했다. 세션 의장을 맡은 브라이언 맥마흔(Brian McMahon·결정학국제연합 연구원, 물리학 전공)씨는 “세계를 우아하게 설명하는 이론(an elegant description)”이라고 치켜세웠다. 맥마흔씨는 세션 의장으로서 발표된 모든 논문의 주요 내용을 본부에 보고할 의무가 있기 때문에 상세하게 메모했고 발표가 끝난 뒤엔 간단하게 자신 의견을 밝히기도 했다.
인도 핵연구센터에서 온 가네산(Srinivasan Ganesan·이론물리학 전공) 박사는 제로존 이론을 들은 소감을 묻는 질문에 “아주 흥미롭다”면서 “혁신적인 이론일수록 옳다는 것이 증명되기까지는 100년이 걸릴 수도 있다”며 껄껄 웃었다. 가네산 박사는 필자에게 “핵물리학 관련 회의 때문에 한국에 자주 갔다”며 “제로존 이론을 설명하는 자료가 있다면 e메일로 보내달라”고 요청하기도 했다. 모스크바 핵물리학데이터센터에서 온 골라쉬빌리(Golashvili T.V.·핵물리학 전공)씨는 “제로존 이론이 내놓은 새로운 데이터가 한국에서 공신력 있게 받아들여지고 있느냐”며 한국의 반응을 떠보기도 했다.
양 원장과 이상지 박사, 그리고 한국표준과학연구원의 방건웅 박사는 3인 공저로 제로존 이론의 핵심 내용과 이론의 유효성을 검증한 논문을 과학기술데이터위원회에서 펴내는 저널 ‘데이터 사이언스(Data Science)’에 제출했다. 콘퍼런스의 주요 의제로 채택된 논문의 경우, 저널에 게재될 확률이 높다는 점에서 국제 과학계가 제로존 이론을 어떻게 평가할지 기대를 모으고 있다. 양 원장은 국제학술회의 발표가 끝난 뒤 “자연의 설계도면은 너무나 단순하고 아름다워 자연과학을 전혀 모르는 사람들도 이해할 수 있다”며 “수많은 과학자가 피와 땀을 흘려 자연을 관찰한 데이터를 자연을 대신해서 보여주고 싶었다”고 소감을 밝혔다. 그는 “자연을 측정하는 단위들은 고유한 성질을 가지면서도 무한한 관계를 맺고 있고, 모든 것은 ‘하나’에서 비롯된다는 것이 제로존 이론의 핵심”이라고 말했다.
필자는 지난해 제로존 이론을 처음으로 소개할 때, 밝히지 못했거나 설명이 부족했던 탓에 독자의 혼란을 초래한 점을 인정한다. 독자들은 제로존 이론의 핵심 가정에 문제가 있다고 지적했고, 가정을 도출한 과정이 생략돼 있다고도 했다. 이런 이유로 이번 신동아 기사에선 국제학술회의에 제출한 제로존 논문을 토대로 그간의 오해를 풀어볼 것이다.
이번에 학술회의에서 발표한 논문에선 지난 신동아 2007년 8월호에서 공개한 것을 보강했다. 우선 지난해 제로존 이론의 세 가지 가정에 새로 두 개가 추가됐다. 당시 소개했던 제로존의 가정은 ‘c(빛의 속도)=h(플랑크 상수)=s(시간단위, 초)=1’이었다. 그러나 이번에 발표한 논문엔 =k=1이 추가됐다. 는 전자질량, e는 전자전하량, 그리고 k는 볼츠만 상수다. 사실 지난해 신동아 발표 때, 추가된 가정까지 밝혔어야 7가지 기본단위를 차원이 없는 숫자로 바꿀 수 있다는 제로존 아이디어에 대해 과학계가 더 잘 이해했을 것이다.
5개의 가정
온라인 백과사전으로 불리는 위키피디아에 영어로 ‘Natural unit(자연단위)’를 넣어보면, 여러 자연단위계에 대한 정의가 나온다. 거기엔 양 원장이 주장하는 것과 관련이 있을 법한 가정들이 나열돼 있다. 예컨대 하트리 단위계나 전자시스템 단위계는 전자질량()=1, 전자전하량()=1이란 가정을 사용하며, 플랑크 단위계는 k=1이란 가정도 쓰고 있다. 세계의 과학계가 다양한 가정을 고안해 우주의 법칙을 재해석하고 있다는 사실이 흥미롭다. 그러나 여러 가지 자연단위계 어디에서도 제로존 이론처럼 s=1 과 =1을 가정으로 제시한 것은 찾아볼 수 없다.
여기서 의문이 드는 것은 독립적으로 적용할 수 있는 가정을 몇 개로 정하는 것이 이론적으로 모순이 없고 적절한가 하는 점이다. 위키피디아에서 확인한 것으론 자연단위계의 출발점인 가정이 공통적으로 다섯 개였다. 이는 국제기본단위를 다른 단위계로 변환할 때 다섯 개의 변환조건이 필요하다는 것을 의미한다. 우주를 연구할 때 사용하는 플랑크 단위계는 다섯 개의 우주물리상수를 무차원수 ‘1’로 가정한다. 광속=중력 상수=디랙 상수=쿨롱 힘 상수=볼츠만 상수=1이다. 이 같은 가정을 통해 플랑크 길이, 플랑크 질량, 플랑크 시간, 플랑크 전하, 그리고 플랑크 온도라는 단위를 얻을 수 있다. 이들 단위는 차원이 없다. 달리 말하면 이들은 모두 무차원수 1이 되며, 이를 활용하면 복잡한 물리 방정식이 간략하게 바뀐다. 차원도 없어진다. 방정식을 다루거나 계산하는 것이 아주 간편해진다. 이런 이유로 천문학계나 소립자를 연구하는 핵물리학계는 자연단위계를 널리 쓰고 있다.
그런데 왜 하필 다섯 개의 가정이 필요할까. 7개의 국제기본단위 중 물질량을 나타내는 몰(mol)은 다른 단위와 달리 아보가드로수로 표현하며 원래 무차원수다. 제로존 시각에선 변환할 필요가 없다. 밝기를 나타내는 칸델라 단위는 기본적으로 절대온도 캘빈과 같이 에너지 형태로 바꿀 수 있다. 따라서 독립적으로 변환조건을 정할 수 있는 기본단위는 시간, 길이, 질량, 전류 그리고 절대온도의 5개가 되는 것이다.
가정은 위에서 말한 5가지 단위와 관련 있는 물리상수들 중에서 대표적인 것을 선택해 무차원수 ‘1’로 설정하되 기본단위들이 독립적으로 존재하면서도 서로 모순되지 않도록 정할 수 있어야 한다. 이런 조건은 자연단위계처럼 제로존 단위를 구성할 때도 동일하게 적용할 수 있다. 제로존은 c=h=s=1뿐 아니라 k=1과 =1을 가정으로 적용해 자연단위계처럼 모두 5개를 독립적으로 정했다. 중요한 점은 신동아 2007년 8월호에서는 이 두 개의 가정을 밝히지 않았지만 이미 이를 고려해 계산해두었고 이번 학술회의에 발표한 논문에선 독립변수로 포함했다.
자, 이제는 새롭게 공개하는 가정, c=h=s==k=1을 통해 7개의 국제단위가 어떻게 단위 없는 숫자로 바뀌는지, 이것이 무엇을 의미하는 지 알아보자. 참고로 지난해 신동아 8월호 발표 때는 과학기술데이터위원회(CODATA)의 2002년 자료를 통해 제로존 이론의 유용성을 검증했다면, 이번엔 2006년 자료로 검증했다.
제로존 가정의 적용은 시간단위 s(초)=1로 설정한 데서 출발한다. 이 부분에 대해 국내 물리학계는 시간을 정지한 것으로 둘 경우, 운동(등속도 운동, 가속도 운동)을 설명할 수 없다는 점을 들어 반박한 적이 있다. 이는 제로존 이론의 가정을 제대로 이해하지 못해서 생기는 오해다. 국제기본단위 중 시간단위 초(s)는 다른 단위와 관계없이 임의의 무차원수로 정할 수 있다. 제로존은 시간 1초를 가장 간단한 수 ‘1’로 정하는 가정을 선택했다. 이를 적용할 경우 1초를 기준으로 측정하는 시간은 무차원수가 되고, 이 숫자는 1초의 몇 배에 해당한다는 것을 의미한다. 일례로 제로존 시간 3이면 3초이고, 제로존 시간 0.7이면 0.7초다. 여기서 무차원수 3이나 0.7 안에는 단위 개념이 포함돼 있고, 이런 새로운 단위를 제로존 이론에선 ‘큐닛(Qunit)’으로 표현한다.
시간을 1로 가정한 것엔 몇 가지 특별한 이유가 있다. 제로존은 측정하는 사람과 측정 대상을 일치시켜놓았다. 측정하는 사람의 한계를 극한으로 줄여 자기 기준으로 자연 상태를 측정할 수 있도록 배치한 것이다. 이것이 ‘s=1’에 담긴 의미다. 달리 말하면 대상을 보는 순간(혹은 그 찰나), 대상을 본 그대로를 표현하는 방식이다. 이보다 더 정확한 묘사는 없을 것이다. 문제는 늘 대상을 있는 그대로 표현하지 않고 왜곡해서 전달할 때 발생한다. 세계적인 천문학자 칼 세이건은 “미망(迷妄)을 주장하는 것보다 실제 있는 그대로의 우주를 파악하는 것이 낫다”고 말한 바 있다. ‘실제 있는 그대로의 우주를 표현’하려는 것이 제로존 이론의 목적이다.
정적 단위와 프랑크 단위의 화해
시간단위 초(s)를 1로 설정하는 또 다른 의미는 정적인 대상, 즉 질량과 길이 단위를 기초로 출발한 국제단위계와 동적인 현상에서 관찰되는 자연 상수를 기초로 한 자연단위계를 연결하기 위한 것이다. 질량과 길이 단위를 출발점으로 7개의 기본단위를 정의하는 국제단위계는 ‘정적 단위계’라 부를 수 있다. 실제로 질량, 길이, 시간, 몰, 온도, 전류 그리고 밝기의 7개 기본단위에는 고전역학의 세계관이 반영돼 있다. 고전역학에 따르면 어떤 물체이건 외부로부터 자극이 없으면 정지한 상태를 유지한다. 시간과 공간이 분리돼 있다고 믿는 것이다. 이 때문에 정적 단위계에는 시간을 재는 단위와 공간을 재는 단위가 다르다.
정적 단위계와 달리 플랑크 단위계는 자연에서 일어나는 동적 현상과 연관이 있는 자연 상수를 잣대로 삼기 때문에 ‘동적 단위계’라고 할 수 있다. 플랑크 단위계의 가정, 즉 빛의 속도=플랑크 상수=디랙상수=중력상수=1에서 속도나 플랑크 상수는 움직임과 연관돼 있다. 빛의 속도는 거리를 시간으로 나눈 것이며, 플랑크 상수는 에너지와 시간의 곱으로 표현되는 최소 에너지 작용량이다. 빛의 속도가 기본단위가 되므로 시간과 공간이 구분되지 않고 속도라고 하는 동적 현상 그 자체가 출발점이 된다.
정적 단위계가 지구상의 물체를 표현하는 데 유용하다면, 플랑크 단위계는 우주의 움직임을 설명하는 데 유용하다. 오늘날 국제단위계가 실생활에 널리 쓰이고 있으나, 그 출발점을 보면 인간이 임의적으로 정한 단위 값, 즉 킬로그램원기나 미터원기를 기준으로 했기 때문에 우주 어디에서도 보편적으로 사용 가능하고, 세월이 흘러도 바뀌지 않아야 한다는 관점에서 보면 완벽한 단위계라고 할 수 없다. 이런 이유로 우주에서 관찰되는 자연현상을 기초로 하는 플랑크 단위를 ‘신(神)의 단위’라고 부른다.
그러나 현재로서는 플랑크 단위가 아무리 신의 단위라고 해도 국제단위계를 사용하는 모든 과학에 적용하기는 어렵다. 불확도가 큰 중력상수(G)를 ‘1’로 설정하는 기본 조건 때문에 이로부터 유도한 물리상수와 단위들도 불확도가 크기 때문이다. 또 국제단위계의 시간 단위인 초(s)를 불확도가 존재하는 값으로 변환하기 때문에 자연단위계를 적용할 수 있는 학문분야가 제한된다.
제로존 이론은 두 단위계의 화해를 제시하는데, 바로 시간 단위 초(s)를 1로 두는 가정 덕분이다. 정적단위계와 동적 단위계를 연결하려면 움직임의 척도가 되는 시간을 일치시켜야 한다. 움직임을 묘사하는 단위계에서 시간을 정지한 것(s=1)으로 두면 운동이 정지한 것과 같은 효과를 주고, 이것이 정적 단위계를 연결하는 고리 구실을 하게 된다. 이는 과학사의 관점에서 보면 고전역학과 양자역학에 바탕을 둔 두 단위계를 연결한 것과 같다. 이런 이유로 신동아 2007년 8월호에서 한국표준과학연구원의 방건웅 박사가 “제로존 이론이 아인슈타인의 상대성이론과 양자역학을 연결했다”고 평가한 것이다.
두 번째 가정 ‘c=1’을 토대로 길이(m)라는 단위의 무차원수를 구해보자. 무차원수(數)란 말이 이해하기 쉽지는 않은 데, 상대비율쯤으로 간주하자. 광속 c=299792458 m/s이고, 가정에 의거해 c=1이므로 길이 단위 미터(m)는 1/2.99792458×108이라는 무차원 수로 표현할 수 있다. 여기서 빛의 속도를 1로 가정한 의미는 무엇일까. 제로존 이론에 따르면 광속(c)과 같은 속도 c=299792458 m/s을 무차원수 1로 정한다는 뜻이다. 광속의 1/10에 해당하는 속도는 v=0.1c이고 이를 제로존의 무차원수로 나타내면 v=0.1이 된다. 국제단위로 나타낸 임의의 속도를 광속으로 나눈 비율이 제로존의 무차원수, 큐닛(Qunit)에 해당한다.
‘최소의 에너지 뭉치’로 표현할 수 있는 플랑크 상수를 1로 정한 의미는 이렇다. 에너지=플랑크 상수×진동수 또는 E=hv로 표시할 수 있다. h=1을 대입하면 E=v가 되며, 제로존 이론에선 에너지와 진동수는 같은 값으로 해석한다. 현대 물리학은 진동수가 같으면 물리적 의미는 동일하다고 해석한다. 진동수가 1Hz라면 에너지 E=1이고, 2Hz라면 E=2가 된다. 제로존 이론은 무차원수가 에너지 크기가 되며 그 크기는 플랑크 상수의 몇 배에 해당하는지 그 비율을 나타낸다.
플랑크 상수 h=6.62606896×10-34Js이고 에너지 단위인 줄(J)을 기본단위로 바꿔 표현하면 h=6.62606896×10-34kgm2/s이 된다. 여기서 또 하나의 가정으로 h=1로 정했으므로 s=1과 함께 앞서 구한 길이 단위 미터에 대한 무차원수를 대입하여 정리하면 킬로그램이란 단위를 무차원수로 바꿀 수 있다. 이를 통해 질량(kg)의 무차원수를 구하면, 1.356392733[68]×1050이고, 불확도는 5×10-8이다.
여기서 불확도라는 개념이 등장하는데 이는 지난해 신동아 8월호 발표 때는 없던 내용이다. 무차원수를 구할 때 이용되는 기존의 물리상수 실험데이터가 지니는 불확도 때문에 발생한다. 이러한 물리상수의 불확도는 국제적으로 물리상수에 관한 한 최고의 권위를 갖고 있는 과학기술데이터위원회에서 발표한 자료에서 확인할 수 있다. 킬로그램에 대응하는 무차원수의 불확도는 플랑크 상수의 불확도로부터 나왔다. 양 원장은 “불확도를 낮출 수 있는 방법을 찾아 이를 적용했고, 모든 단위와 물리상수의 무차원수를 얻는 과정에서 나타날 수 있는 불확도까지 밝혔다”고 설명했다.
불확도를 낮출 수 있는 방안이란 각 단위 또는 물리량에 대한 무차원수를 유도하는 과정에서 다른 물리상수들과 비교해 상대적으로 불확도가 가장 낮은 리드베리 상수(불확도 6.6×10-12)와 미세구조상수(불확도 6.8×10-10)를 이용하는 것이다. 예컨대 리드베리 상수 Rcc=a2mec/2h= 10973731.568527[73]m-1에서 제로존의 가정(c=h=1)을 적용하고, 미세구조상수(a=7.2973525376[50]×10-3)와 미터의 무차원 수를 대입해보자. 여기에서 전자질량의 무차원수를 얻을 수 있고 =1에 의해 전자전하량도 동일한 무차원수로 얻어진다. 즉, ==1.2355899746[17]×1020이고 불확도는 1.4×10-9이다.
열역학적 온도 1K에 대한 무차원 수는 에너지등가 관계식을 이용해 구한다. k/h=2.0836644×10 10HZK-1에서 k는 볼츠만 상수이고 절대온도 K를 무차원수로 나타내기 위해 마지막 가정을 적용해 볼츠만 상수를 1로 정한다. 여기서 볼츠만 상수를 1로 놓고, 시간과 길이 및 질량의 무차원수를 적용해 k=h=1과 Hz=1/s=1을 대입하면 온도(K)의 변환비율(무차원 수)이 정해진다. K의 무차원수는 2.0836644[36]×1010이며 불확도는 1.7×10-6이다.
전류의 단위 암페어(A)는 단위시간당 전하량(C)이므로 A=C/s에서 s=1을 적용하면 암페어의 무차원수와 전하량의 무차원수는 같아진다. 과학기술데이터위원회의 2006년 발표 자료에 따르면 전자전하량 e=1.602176487[40]×10-19C이므로 앞서 구한 전자전하량(e)의 무차원수를 대입하면 전하량 단위 쿨롱(C)의 무차원수를 구할 수 있다. 이는 바로 암페어의 무차원수가 된다. 값은 7.71194675[23]×1038(2.9×10-8). 괄호 안은 불확도.
밝기의 기본단위인 칸델라(cd)의 정의는 다음과 같다. cd=(1/683)Ws-1.여기서 W=J/s=kg m2s-3이므로 cd(1/683)kg m2s-4로 바꿀 수 있다. 이 식에서 s=1을 적용하고, 질량과 길이의 무차원수를 대입하면 칸델라의 무차원수는 2.20964927[11]×1030이고 불확도는 5×10-8이다.
몰(mol)은 아보가드로수(NA=6.02214179×1023/mol)만큼의 원자나 분자를 포함하는 물질량이다. 아보가드로수를 NA mol=6.02214179×1023로 표현하면, 단위가 없는 무차원수가 된다. 제로존 무차원수와 같다. 불확도는 5.0×10-8 (7개의 기본단위를 제로존 무차원수로 변환한 표1을 참조).
제로존의 무차원수는 근본적으로 기본단위들에 제로존 가정을 적용해 모두 동일한 개념의 수로 변환함으로써 얻어진 것이다. 이는 마치 서로 다른 상품을 사고 팔 때, 상품의 가치를 돈으로 환산해 거래하는 것과 같다. 값어치는 다르지만 동일한 화폐를 주고받는 걸 생각해본다면 제로존의 무차원수가 무엇인지 가늠할 수 있다. 그러나 화폐만 볼 때는 우리가 무엇을 교환했는지 잊어버릴 수 있다. 이 때문에 제로존 무차원수의 물리적 의미를 파악하기 위해서는 가장 기본이 되는 무차원수 ‘1’의 물리적 의미를 국제단위계로 변환한 값이 필요하다. 표2는 제로존 무차원수 ‘1’에 대응하는 등가 물리량을 표시해놓았다.
7개의 단위를 무차원수로 변환했으니, 이들 단위로부터 파생된 유도단위도 모두 무차원수로 바꿀 수 있다. 대표적인 유도단위로는 진동수(주파수) 단위 헤르츠(Hz), 전하량 단위 쿨롱(C), 힘의 단위 뉴턴(N), 압력의 단위 파스칼(Pa) 등이 있다. 기본단위의 무차원수를 이용하면 다양한 유도단위를 모두 무차원수로 나타낼 수 있다(표 3 참조).
2007년 신동아 8월호에서도 밝혔듯 우리가 관심을 가져야 하는 건, 제로존 이론이 얼마나 유용하고 정확한지 검증하는 일이다. 이를 위해 실험을 통해 세계가 인정하고 사용한 물리상수를 비교대상으로 삼아야 한다. 전자의 전하량과 질량 비율 (e/me) 계수, 전기 저항 표준과 연관 있는 본-클리칭 상수, 전압 표준과 관련 있는 조지프슨 상수, 전기량 관련 패러데이 상수 그리고 과학기술데이터위원회(CODATA)의 에너지 관련 단위의 64가지 변환계수를 비교했다. CODATA 자료는 2007년 12월 발간된 2006년판 데이터를 활용하였다.
전자전하량과 전자질량 비율에 대한 CODATA 2006년 자료를 보면 e/me=1.785820150[44]×1011C/kg이다. 제로존은 이 비율을 1이라고 가정한 바 있다. 따라서 이를 대입해 다시 단위를 좌변으로 옮겨 정리하면 kg/C=1.7585820150[44]×1011이다. 이와 비교하기 위해 제로존 이론을 통해 변환된 C와 kg의 무차원수를 대입해 좌변과 우변이 어느 정도 일치하는지 계산해보면, 표4에서와 같이 주어진 불확도 범위 안에서 서로 일치하는 것을 알 수 있다.
CODATA 2006년 자료에서 본-클리칭 상수는 h/e2=2.5812807557[18]×104Ω이다. h=1을 적용하고 단위를 좌변으로 옮겨 정리하면 1/Ωe2 = 2.5812807557(18) ×1014 과 같다. 제로존 이론을 통해 구한 옴(Ω)과 전자전하량(e)의 무차원수를 대입하여 계산한 결과를 비교하면 표4에서와 같이 주어진 불확도 범위에서 서로 일치하는 것을 알 수 있다.
CODATA 2006년 자료에서 조지프슨 상수는 2e/h=4.83597891[12]×10 14Hz/V와 같다. Hz=1/s=h=1을 대입하고, 단위를 좌변으로 옮겨 정리하면 2eV = 4.83597891(12) × 1014 와 같다. 제로존이론을 통해 구한 전자전하량(e)과 전압(V)의 무차원 수를 대입해 계산한 결과와 비교하면 주어진 불확도 범위 내에서 서로 일치한다.
CODATA 2006년 자료에서 패러데이 상수는 NAe=9.64853399[24]×104C/mol다. 단위를 좌변으로 옮겨 이를 다시 정리하면 (NAmol)eC=9.64853399[24]×104이다. 제로존이론을 통해 구한 물질량(NAmol), 전자전하량(e) 및 쿨롱(C)의 무차원수를 대입하여 계산한 결과를 비교하면 불확도 범위 내에서 서로 일치한다.
마지막 검증은 CODATA 2006년 자료에 등장하는 줄, 질량, 길이의 역수(m-1), 진동수, 열역학적 온도, 전자볼트(eV), 통합원자질량 상수(u) 및 하트리 에너지(Eh) 등 8가지 에너지 관련 단위 간의 상관관계를 이용해 구한 64개의 변환계수에 대해 CODATA에서 제시한 값과 제로존 무차원수를 이용해 계산한 결과를 비교하는 것이다. CODATA에서 제시한 변환계수는 국제단위의 상관관계를 이용해 계산한 결과지만, 제로존 이론은 구하려는 각각의 변환계수와 관련된 2개의 단위 또는 물리량에 대응하는 무차원수를 이용해 계산한다. 그 결과를 CODATA에서 제시한 값과 비교해 불확도 범위 내의 적합성 여부를 판정한다.
제로존 이론으로 구한 단위별 무차원 수를 이용해 변환계수 64개를 계산해 표5에 정리해놓았다. 표5의 각 칸에 나타난 변환계수는 세로 줄에 표시한 단위를 가로 줄에 표시한 단위로 나눈 값을 말한다. 예컨대 세로 줄의 K 와 가로 줄의 J가 교차하는 칸에 표시한 값은 K/J 와 같이 제로존 무차원 수로 계산한 변환계수다. 변환계수 안의 괄호 안의 숫자는 각 계수의 유효숫자 마지막 자리에 맞춰 표시한 ‘불확도’를 뜻한다. 불확도를 표시하지 않은 것은 불확도 없이 정확한 값이란 의미다.
여기서 한 가지 짚고 넘어가야 할 부분이 있다. 2007년 신동아 8월호에선 CODATA에서 제시한 64개 변환계수를 제로존 무차원수로 계산한 값과 비교한 결과, 하트리 에너지 관련 변환계수 등 4개가 부정합한 것으로 결론을 낸 바 있다. 그러나 이번 신동아 발표에선 부정합을 보이는 변환계수는 없는 것으로 드러났고, 당시 제로존 이론을 통해 계산한 값도 이번에 발표한 논문을 통해 제시한 값들과 약간의 차이가 있음을 발견할 수 있다. 이는 어떻게 설명해야 할까.
이에 양 원장은 “지난해 신동아 8월호 때는 제로존의 무차원 수를 도출하는 과정에서 불확도를 고려하지 않았으나, 이번에 발표한 논문에서는 불확도가 가장 낮은 리드베리 상수와 미세구조상수를 이용해 무차원수를 산출함으로써 불확도가 최적화됐기 때문”이라고 밝혔다. 그는 이어 “새로 발표한 2006년 CODATA 자료를 이용해 계산한 것도 한 원인”이라고 말했다.
CODATA의 실험값 64개와 제로존 이론의 무차원수를 이용해 구한 값이 불확도 범위 안에서 일치한 것은 이번 학술대회를 통해 새롭게 발표한 제로존 이론이 올바르고 유용한 것이며, 이용 가치가 충분히 있음을 방증하는 것이다.
제로존 이론이 ‘엉터리’라는 평가가 난무할 때, 필자는 신동아 8월호 기사를 헝가리 출신의 철학 교수이자 미래학자인 어빈 라즐로에게 보낸 적이 있다. 그는 한국에도 꽤 알려져 있으며 ‘비전 2020’‘인간의 미래는 행복한가’‘You can change the world’ ‘과학, 우주에 마법을 걸다’ 등 그의 책이 여러 권 번역돼 있다. 일본 고이평화상을 수상했으며, 노벨평화상 후보에 두 번 오르기도 했다. 유럽의 미래학 연구그룹으로 잘 알려진 ‘로마클럽’의 창립회원이며, 세계적인 과학자, 예술가, 평화운동가들의 모임인 ‘부다페스트 클럽’을 창설한 바 있다. 그는 제로존 기사를 읽고 이런 소감을 보내주었다.
“The numerical unification you describe in your article is clearly a major breakthrough. If it can eliminate cumbersome equations and allow computers to crunch the numbers and come up with exact answers and proof, that's a great step forward.”
“당신의 기사에서 제시한 ‘수의 통합’ 이론은 정말 엄청난 발견이오. 만약 제로존 이론으로 성가신 방정식을 없앨 수 있다면, 그 덕분에 컴퓨터의 처리속도가 훨씬 빨라지고 정확한 답을 얻을 수 있다면, 그건 (인류의) 위대한 도약이오.”
'스크랩' 카테고리의 다른 글
소소한 행복을 느끼는 비결 (0) | 2008.11.19 |
---|---|
‘남·북·몽골 연방통일국가’가 타당한 이유 (0) | 2008.11.18 |
‘무법자’ 중국어선 쫓는 해경 1509 경비함 3박4일 동승기 (0) | 2008.11.16 |
식약청 미공개 연구보고서 (0) | 2008.11.15 |
천국의 국경을 넘다 (0) | 2008.11.14 |